Ciri-ciri bahan Keluli

Templat:SteelsBesi, sebagaimana kebanyakan logam, biasanya tidak dijumpai dalam kerak Bumi dalam bentuk unsur.[2] Besi hanya boleh didapati dalam kerak Bumi dalam bentuk sebatian dengan oksigen dan belerang. Biasanya galian mengandungi besi termasuk Fe2O3—bentuk iron oxida yang terdapat dalam galian hematite, dan FeS2—pyrite (emas dungu).[3] Besi dikeluarkan dari bijih dengan menyingkir oksigen dengan mengabungkannya dengan pasangan kimia yang lebih digemari seperti karbon. Proses ini yang dikenali sebagai peleburan, pada awalnya digunakan dengan logam yang mempunyai tahap lebur rendah. Tembaga cair pada suhu lebih sedikit pada 1000 °C, sementara timah cair sekitar 250 °C. Besi tuang —besi sebatian dengan lebih dari 1.7% karbon—cair sekitar 1370 °C. Kesemua suhu ini mampu dicapai dengan kesemua kaedah kuno yang telah digunakan sekurang-kurangnya lebih 6,000 tahun (semenjak Zaman Gangsa). Disebabkan kadar pengoksidaan itu sendiri meningkat pada suhu melebihi 800 °C, ia penting bahawa peleburan dilakukan dikawasan rendah oksigen. Tidak seperti tembaga dan timah, besi cair menyerap karbon dengan mudah, oleh itu hasir peleburan menghasilkan sebatian yang mengandungi terlalu banyak karbon untuk dipanggi keluli.[4]

Walaupun dalam julat kepekatan sempit yang menghasilkan keluli, campuran karbon dan besi boleh membentuk beberapa struktur berlainan, dengan ciri-ciri yang amat berbeza; memahami ini amat penting bagi menghasilkan keluli berkualiti. Pada suhu bilik, bentuk besi paling stabil adalah kubik pusat badan - (body-centered cubic - BCC) struktur besi ferrite atau besi-α, bahan logam yang agak lembut yang hanya mampu melarutkan sedikit kepekatan karbon (tidak melebihi 0.021 wt% pada 910 °C). Melebihi 910 °C ferrite melalui fasa perantaraan dari kubik pusat badan kepada struktur kubik pusat muka - (face-centered cubic - FCC), dikenali sebagai austenite atau besi-γ, yang sama logam dan lembut tetapi mampu melatutkan lebih banyak karbon (sehingga 2.03 wt% karbon pada 1154 °C).[5] Ketika austenite yang kaya dengan karbon menyejuk, campuran itu cuba kembali kepada fasa ferrite, menyebabkan lebihan karbon. Satu cara bagi karbon meninggalkan austenite adalah bagi cementite untuk terpelowap (precipitate) keluar dari campuran, meninggalkan besi yang cukup tulin bagi membentuk ferrite, menghasilkan campuran cementite-ferrite. Cementite adalah fasa stoichiometri dengan formula kimia Fe3C. Cementite terbentuk dalam kawasan kaya kandungan karbon sementara kawasan lain kembali kepada ferrite sekitarnya. Pola pengukuhan dir seringkali muncul dalam proses ini, mendorong kepada lapisan pola yang dikenali sebagai pearlite (Fe3C:6.33Fe) disebabkan rupanya seperti mutiara, atau bainite yang serupa tetapi kurang cantik.

Fail:Phase diag iron carbon-color temp.pngDiagram fasa besi-karbon, menunjukkan keadaan yang diperlukan bagi membentuk fasa berlainan.

Kemungkinan allotrope yang paling penting adalah martensite, bahan yang metastabil secara kimia dengan empat hingga lima kali kekuatan ferrite. Kandungan minima Karbon 0.4 wt% (C:50Fe) diperlukan bagi membentuk martensite. Apabila austenite disejukkan bagi membentuk martensite, karbon di "kakukan" apabila struktur sel bertukar dari FCC kepada BCC. Atom karbon adalah terlalu besar untuk muat kedalam kekosongan interstitial dan dengan itu mengherotkan struktur sel menmbentuk struktur tetragonal pusat badan (BCT). Martensite dan austenite mempunyai komposisi kimia yang serupa. Dengan itu, ia memerlukan amat sedikit tenaga pengaktif haba bagi terbentuk.

Proses rawatan haba bagi kebanyakan keluli membabitkan memanaskan sebatian sehingga austenite terbentuk, kemudian merendam logam merah membara kedalam air atau minyak, menyejukkannya dengan pantas sehinggakan penukaran kepada ferrite atau pearlite tidak mempunyai masa yang mencukupi untuk berlaku. Penukaran kepada martensite, sebaliknya berlaku hampir serta merta, disebabkan tenaga pengaktif yang lebih rendah.

Martensite adalah kurang tumpat berbanding austenite, dengan itu penukaran antara mereka menyebabkan isipadu merosot. Dalam kes ini, pengembangan berlaku. Tekanan dalaman dari pengembangan ini mengambil bentuk pemampatan fizikal pada kristal martensite dan ketegangan pada baki ferrite, dengan sejumlah besar pengasingan (shear) pada kedua konstituent. Sekiranya rendaman tidak dilakukan dengan betul, ketegangan dalaman ini mampu menyebabkan ia berkecai ketika menyejuk; sekurang-kurangnya, ia menyebabkan pengerasan kerja (work hardening) dalaman dan kecacatan mikroskopik yang lain. Adalah perkara biasa bagi retakan rendaman berlaku apabila air digunakan, sungguhpun ia tidak selalunya kelihatan. [6]

Pelet bijih besi bagi penghasilan keluli.

Pada titik ini, sekiranya kandungan karbon cukup tinggi untuk menghasilkan ketumpatan martensite yang banyak, ia menghasilkan bahan yang amat keras tetapi rapuh. Seringkali keluli melalui rawatan haba berikut pada suhu lebih rendah untuk memusnahkan sebahagian dari martensite (dengan membenarkan cukup masa bagi pembentukan cementite.) dan membantu mengimbangi ketegangan dalaman dan menghapuskan kecacatan. Proses ini melembutkan keluli, menghasilkan logam yang lebih kenyal (ductile) dan tidak mudah patah. Disebabkan masa amat penting kepada hasil akhir, proses ini dikenali sebagai baja (tempering), yang membentuk keluli baja.[7]

Bahan lain sering kali ditambah kepada campuran karbon-besi bagi mengawal ciri-ciri akhir. Nickel dan manganum dalam keluli menambah ketahanan kelenturan (tensile strength) dan menjadikan austenite lebih stabil dari segi kimia, chromium meningkatkan kekerasan dan tahap lebur, dan vanadium turut meningkatkan kekerasan disamping mengurangkan kesan kelesuan logam.


Steel was known in antiquity, and may have been produced by managing the bloomery so that the bloom contained carbon.[8] Some of the first steel comes from East Africa, dating back to 1400 BCE.[9] In the 4th century BCE steel weapons like the Falcata were produced in the Iberian peninsula. The Chinese of the Han Dynasty (202 BCE – 220 CE) created steel by melting together wrought iron with cast iron, gaining ultimate product of a carbon intermediate—steel—by the 1st century CE.[10][11] Along with their original methods of forging steel, the Chinese had also adopted the production methods of creating Wootz steel, an idea imported from India to China by the 5th century CE.[12] Wootz steel was produced in India and Sri Lanka from around 300 BCE. This early steel-making method employed the use of a wind furnace, blown by the monsoon winds.[13] Also known as Damascus steel, wootz is famous for its durability and ability to hold an edge. It was originally created from a number of different materials including various trace elements. It was essentially a complicated alloy with iron as its main component. Recent studies have suggested that carbon nanotubes were included in its structure, which might explain some of its legendary qualities, though given the technology available at that time, they were probably produced more by chance than by design.[14] Crucible steel was produced in Merv by 9th to 10th century CE.

In the 11th century, there is evidence of the production of steel in Song China using two techniques: a "berganesque" method that produced inferior, inhomogeneous steel and a precursor to the modern Bessemer process that utilized partial decarbonization via repeated forging under a cold blast.[15]

Early modern steel

A Bessemer converter in Sheffield, England.

Blister steel

Rencana utama: Cementation process

Blister steel, produced by the cementation process was first made in Italy in the early 17th century CE and soon after introduced to England. It was probably produced by Sir Basil Brooke at Coalbrookdale during the 1610s. The raw material for this was bars of wrought iron. During the 17th century it was realised that the best steel came from oregrounds iron from a region of Sweden, north of Stockholm. This was still the usual raw material in the 19th century, almost as long as the process was used.[16][17]

Crucible steel

Rencana utama: Crucible steel

Crucible steel is steel that has been melted in a crucible rather than being forged, with the result that it is more homogeneous. Most previous furnaces could not reach high enough temperatures to melt the steel. The early modern crucible steel industry resulted from the invention of Benjamin Huntsman in the 1740s. Blister steel (made as above) was melted in a crucible in a furnace, and cast (usually) into ingots.[17]Rencana utama: Penyimenan berjalan Keluli lecur, dikeluarkan oleh penyimenan berjalan adalah pertama dibuat di Itali dalam abad ke-17 dan awal CE dan tidak lama lagi sehabis diperkenalkan ke England. Ia adalah mungkin dihasilkan Sir Basil Brooke yang dekat di Coalbrookdale sepanjang 1610s. Bahan mentah untuk ini adalah batang-batang besi tempaan. Sepanjang ia abad ke-17 adalah sedar yang waja yang terbaik datang daripada oregrounds kuat daripada sebuah rantau Sweden, utara Stockholm. Ini adalah masih bahan mentah biasa dalam abad ke-19, hampir sebagai proses yang lama seperti telah digunakan

Modern steelmaking

Oven keluli Siemens-Martin di Muzium Industri Brandenburg.See also History of the modern steel industry.

Era moden dalam penghasilan besi bermula dengan pengenalan proses Bessemer oleh Henry Bessemer pada akhir 1850-an. Ini membolehkan keluli dihasilkan dalam jumlah yang besar dengan murah, dengan itu besi serdahana kini digunakan bagi kebanyakaan tujuan yang sebelum ini besi tempa digunakan.[18] Ini hanyalah yang pertama dalam kaedah penghasilan besi. Proses Gilchrist-Thomas (atau asas proses Bessemer) merupakan peningkatan kepada proses Bessemer, melapik penukar dengan bahan asas bagi menyingkir phosphorus. Satu lagi adalah proses Siemens-Martin kaedah penghasilan besi relau terbuka, di mana proses Gilchrist-Thomas seiring dan bukan menggantikannya, proses asal Bessemer.[17]

Ini dijadikan lapuk oleh proses Linz-Donawitz penghasilan besi oksijen asas, dibangunkan pada tahun 1950-an, dan proses penghasilan besi oksijen yang lain.[19]